On two categorifications of the arrow polynomial for virtual knots

نویسندگان

  • Heather Ann Dye
  • Louis Hirsch Kauffman
  • Vassily Olegovich Manturov
چکیده

Two categorifications are given for the arrow polynomial, an extension of the Kauffman bracket polynomial for virtual knots. The arrow polynomial extends the bracket polynomial to infinitely many variables, each variable corresponding to an integer arrow number calculated from each loop in an oriented state summation for the bracket. The categorifications are based on new gradings associated with these arrow numbers, and give homology theories associated with oriented virtual knots and links via extra structure on the Khovanov chain complex. Applications are given to the estimation of virtual crossing number and surface genus of virtual knots and links.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the Arrow Polynomial

Determining if two knots are not equivalent in an e cient manner is important in the study of knots. The arrow polynomial, which is calculated from a virtual knot diagram and is invariant under the Reidemeister moves, can be used to determine if two knots are not equivalent and determine a lower bound on the virtual crossing number. In this paper, we present the necessary data structures and al...

متن کامل

An Extended Bracket Polynomial for Virtual Knots and Links

This paper defines a new invariant of virtual knots and flat virtual knots. We study this invariant in two forms: the extended bracket invariant and the arrow polyomial. The extended bracket polynomial takes the form of a sum of virtual graphs with polynomial coefficients. The arrow polynomial is a polynomial with a finite number of variables for any given virtual knot or link. We show how the ...

متن کامل

Virtual Crossing Number and the Arrow Polynomial

We introduce a new polynomial invariant of virtual knots and links and use this invariant to compute a lower bound on the virtual crossing number and the minimal surface genus. 1 The arrow polynomial We introduce the arrow polynomial, an invariant of oriented virtual knots and links that is equivalent to the simple extended bracket polnomial [6]. This invariant takes values in the ring Z[A,A, K...

متن کامل

New Categorifications of the Chromatic and the Dichromatic Polynomials for Graphs

In this paper, for each graphG, we define a chain complex of graded modules over the ring of polynomials, whose graded Euler characteristic is equal to the chromatic polynomial of G. We also define a chain complex of doubly graded modules, whose (doubly) graded Euler characteristic is equal to the dichromatic polynomial of G. Both constructions use Koszul complexes, and are similar to the new K...

متن کامل

On Polynomial Invariants of Virtual Links

The VA-polynomial proposed in the author’s earlier paper (Acta Appl. Math. 72 (2002), 295–309) for virtual knots and links is considered in this paper. One goal here is to refine the definition of this polynomial to the case of the ring Z in place of the field Q. Moreover, the approach in the paper mentioned makes it possible to recognize “long virtual knots” obtained from equivalent virtual kn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009